18. $m \angle P=51^{\circ} ; m \angle Q=78$; By Theorem 4-1, we know that $\angle P \cong \angle R$ since we are given $\overline{P Q} \cong \overline{Q R}$. Given that $m \angle R=51$, we can solve for the unknown angle measurements.
$m \angle P=m \angle R$
$m \angle P=51$
$m \angle Q+m \angle P+m \angle R=180$
$m \angle Q+51+51=180$
$m \angle Q=78$
19. $m \angle S=56 ; m \angle U=56$; By Theorem 4-1, we know that $\angle S \cong \angle U$ since we are given $\overline{S T} \cong \overline{T U}$. Given that $m \angle T=68$, we can solve for the unknown angle measurements.

$$
\begin{aligned}
& m \angle S+m \angle T+m \angle U=180 \\
& m \angle S+68+m \angle R=180 \\
& m \angle S+m \angle R=112 \\
& 2(m \angle S)=112 \\
& m \angle S=56 \\
& m \angle S=m \angle U=56
\end{aligned}
$$

20. $D E=20 ; E F=20 ; D F=29 ;$ By Theorem 4-1, we know that $\overline{D E} \cong \overline{E F}$ since we are given $\angle D \cong \angle F$. Given that $D E=20$ and $E F=4 x-12$, solve for the variable x.

$$
\begin{aligned}
& E F=D E \\
& 4 x-12=20 \\
& 4 x=32 \\
& x=8
\end{aligned}
$$

We then use the value of x to solve for the lengths of the sides of the triangle.

$$
\begin{aligned}
& E F=4 x-12=4(8)-12=32-12=20 \\
& F D=3 x+5=3(8)+5=24+5=29 \\
& D E=20
\end{aligned}
$$

21. $G H=45 ; H J=45 ; G J=29$; By Theorem $4-1$, we know that $\overline{G H} \cong \overline{H J}$ since we are given $\angle G \cong \angle J$. Given that $G H=45$ and $H J=6 x+3$, solve for the variable x.
$H J=G H$
$6 x+3=45$
$6 x=42$
$x=7$

We then use the value of x to solve for the lengths of the sides of the triangle.
$H J=6 x+3=6(7)+3=42+3=45$
$J G=4 x+1=4(7)+1=28+1=29$
$G H=45$
22. 20 ; Given $m \angle D F E=70$, we can apply Theorems $4-1$ and $4-2$ to solve for $m \angle D E G$.
$m \angle D E F+m \angle D F E+m \angle F D E=180$
$2 m \angle D F E+m \angle D E F=180$
$2(70)+m \angle D E F=180$
$m \angle D E F=40$
$2 m \angle D E G=40$
$m \angle D E G=20$
23. $16 \sqrt{2}$; Given $a=8$ and $c=24$, we can apply Theorem $4-2$ to identify b as a perpendicular bisector of $D F$ and solve for b using the Pythagorean Theorem.

$$
a^{2}+b^{2}=c^{2}
$$

$b=\sqrt{c^{2}-a^{2}}$
$b=\sqrt{(24)^{2}-8^{2}}$
$b=16 \sqrt{2}$
24. Given : $\overline{A D} \cong \overline{B D} \cong \overline{C D}$

Answers may vary. Sample:
$\triangle A D B$ and $\triangle C D B$ are isosceles by the definition of isosceles triangles.
Let $m \angle D A B=x$.
$m \angle D B A=x$ by the Isosceles Triangle Theorem.
$m \angle C D B=2 x$ by the Triangle Exterior Angle Theorem.
By the Triangle Angle-Sum Theorem,

$$
\begin{aligned}
& m \angle B C D+m \angle C D B+m \angle D B C=180 \\
& 2 \times m \angle C D B+2 x=180 \\
& m \angle C D B=\frac{180-2 x}{2} \\
& m \angle C D B=90-x .
\end{aligned}
$$

By the Triangle Angle-Sum Theorem,

$$
\begin{aligned}
& m \angle A B C+m \angle B C A+m \angle C A B=180 \\
& m \angle A B C+(90-x)+x=180 \\
& m \angle A B C+90=180 \\
& m \angle A B C=90
\end{aligned}
$$

Therefore, $\triangle A B C$ is a right triangle because $m \angle A B C=90$.
25. 32; Applying the definition of equilateral triangles, we know that $\angle Q P S \cong \angle S Q P \cong \angle P S Q$ and each angle has a value of 60 . We can then solve for the $m \angle R S Q$.

$$
\begin{aligned}
& m \angle P S Q+m \angle R S Q=m \angle P S R \\
& 60+m \angle R S Q=134 \\
& m \angle R S Q=74
\end{aligned}
$$

Looking at the graph, we also know that $\overline{S Q} \cong \overline{Q R}$ and can apply Theorem $4-1$ to solve for $m \angle S Q R$.
$m \angle S Q R+m \angle R S Q+m \angle S R Q=180$
$2(m \angle R S Q)+m \angle S R Q=180$
$2(74)+m \angle S R Q=180$
$m \angle S R Q=32$
27. a. 5.8 feet; Using the definition of an equilateral triangle, we know that all sides of the triangle are equal. By Theorem 4-1 and 4-2, we know that the triangle is also an isosceles triangle, and therefore the perpendicular bisector of length 5 feet intersects the center of the base of the triangle. The triangle side length, x, can be found as follows.
$5^{2}+\left(\frac{x}{2}\right)^{2}=x^{2}$
$x^{2}-\frac{x^{2}}{4}=25$
$\frac{3 x^{2}}{4}=25$
$x^{2}=\frac{100}{3}$
$x \approx 5.8$
b. The tent is equilateral and therefore also isosceles. The perpendicular bisector of the bottom of the tent is also the altitude, so a right triangle is formed and the length can be found with the Pythagorean Theorem.

