17. Given: $A B C D E$, where $\angle E A B \cong \angle A B C \cong \angle B C D \cong \angle C D E \cong \angle D E A$ and $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{D E} \cong \overline{E A}$.

Prove: $\triangle A C E$ is an isosceles triangle

Statement	Reason
1) $\overline{A B} \cong \overline{E D}, \overline{B C \cong \overline{D C},}$ $\angle A B C \cong \angle E D C$	1) Given.
2) $\triangle A B C \cong \triangle E D C$	2) Side-Angle-Side (SAS)
3) $\overline{A C \cong \overline{E C}}$	3) Corresponding Parts of Congruent Triangles are Congruent (CPCTC).
4) $\triangle A C E$ is an isosceles triangle.	4) Definition of isosceles

18. $m \angle R T S=f$. Given $\overline{D E} \cong \overline{S R}, \overline{D F} \cong \overline{R T}$ and $\angle E D F \cong \angle S R T$. According to SAS, $\triangle D E F \cong \triangle R S T$. By CPCTC, if two triangles are congruent, then each pair of corresponding angles is congruent. Therefore, $\angle D F E \cong \angle R T S$ by CPCTC. Since we are given $m \angle D E F=f$ and $\angle D E F \cong \angle R T S$ by CPCTC, $m \angle R T S=f$.
19. According to SSS , if all side lengths of one triangle are congruent to all side lengths of another triangle, then the triangles are congruent. All three sides must be known to use SSS, so the lengths of $R P$ and $U T$ are needed.
20. To show congruency by SSS , you also need to know $\overline{A B} \cong \overline{D E}$ and $\overline{A C} \cong \overline{D F}$
21. Yes. Given $\overline{R S} \cong \overline{T U}, \overline{R V} \cong \overline{V U}$, and $\angle T S V \cong \angle S T V$. $\triangle S T V$ is isosceles by the definition of isosceles triangles. $\overline{S V} \cong \overline{T V}$ by the Converse of the Isosceles Triangle Theorem. So $\triangle R S V \cong \triangle U T V$ by SSS.
22. Yes; $\overline{P Q} \cong \overline{P S}, \overline{P R} \cong \overline{P R}$, and $\angle Q P R \cong \angle S P R$, so $\triangle P Q R \cong \triangle P R S$ by $S A S$.
23. No; the players run the same distance. Given that the field is a rectangle, the opposite sides that measure 10 meters are congruent. By the Reflexive Property of Congruence, the south side of the field is congruent to itself and the southwest and southeast corners are congruent because they are right angles. So, by SAS, the triangles composed of two adjacent sides of the field and the connecting diagonal are congruent triangles and the diagonals run by the girls are congruent by CPCTC.
