10. Dilate $\triangle X Y Z$ by scale factor $\frac{T U}{X Y}$. The image $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ is congruent to $\triangle T U V$ by SAS, so there is a rigid motion that maps $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ to $\triangle T U V$. Since the composition of a dilation and rigid motion maps $\triangle X Y Z$ to $\triangle T U V$, $\triangle X^{\prime} Y^{\prime} Z^{\prime} \sim \triangle T U V$.
11. a. $\triangle N L M ; \frac{A B}{N L}=\frac{B C}{L M}=\frac{A C}{N M}$, so $A B C \sim N L M$ by SSS~.
b. $\triangle T S R ; \angle A \cong \angle T, \angle B \cong \angle S$, so $\triangle A B C \sim \triangle T S R$ by AA~.
12. If the triangles are congruent by ASA, then they have two pairs of congruent angles. That meets the conditions for the AA~ Similarity Theorem, so the triangles are similar.
13. Russell assumed that either $\angle K$ or $\angle M$ has a measure of 60° which is only true if the triangles are similar, which has not yet been proven. $\angle K$ could measure 59° and $\angle M$ could measure 41°, and the triangles would not be similar.
14. Dilate $\triangle L M N$ by a factor of $\frac{Q R}{L M}$. The image $\triangle L^{\prime} M^{\prime} N^{\prime}$ is congruent to $\triangle Q R S$ by ASA, so there is a rigid motion that maps $\triangle L^{\prime} M^{\prime} N^{\prime}$ to $\triangle Q R S$. Since the composition of a dilation and rigid motion maps $\triangle L M N$ to $\triangle Q R S, \triangle L M N \sim$ $\triangle Q R S$.
15. Because there is no Side-Side-Angle Congruence Criteria, it cannot be shown that a dilated triangle is necessarily congruent to a triangle where the two pairs of corresponding sides are proportional and a non-included pair of angles is congruent.
16. No; Since no angle measurements are given, we can only prove triangle by similarity by the SSS~ Similarity Theorem.
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{2}{3}$, but $\frac{A C}{D F} \neq \frac{2}{3}$, so $\triangle A B C$ and $\triangle D E F$ are not similar.
17. Yes; $\angle K=180^{\circ}-60^{\circ}-40^{\circ}=80^{\circ}$, so $\angle K \cong \angle Q$ and $\angle J \cong \angle P$; thus $\triangle J K L \sim \triangle P Q R$ by AA~.
18. Yes; $\angle Y=180^{\circ}-50^{\circ}-22^{\circ}=108^{\circ}$ and $\frac{S T}{X Y}=\frac{T U}{Y Z}=\frac{3}{4}$, so $\triangle S T U \sim \triangle X Y Z$ by SAS~.
19. $F G=2.8$; Since $\triangle E F G \sim \triangle L M N$ by $\sim A A$, solve for $F G$.

$$
\begin{aligned}
\frac{F G}{E F} & =\frac{L M}{M N} \\
\frac{F G}{4} & =\frac{3.5}{5} \\
F G & =4 \cdot \frac{3.5}{5} \\
F G & =2.8
\end{aligned}
$$

20. $x=33.8$; Since $180^{\circ}-67^{\circ}-67^{\circ}=46^{\circ}$, the triangles are similar by $\sim \mathrm{AA}$. Solve for x.

$$
\begin{aligned}
& \frac{x}{26}=\frac{26}{20} \\
& x=26 \cdot \frac{26}{20} \\
& x=33.8
\end{aligned}
$$

21. Dilate $\triangle A B C$ by a factor of $\frac{E F}{A B}$. The image $\triangle A^{\prime} B^{\prime} C^{\prime}$ is congruent to $\triangle E F G$ by SSS, so there is a rigid motion that maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ to $E F G$. Since the composition of a dilation and rigid motion maps $\triangle A B C$ to $E F G, \triangle A B C \sim$ $E F G$.
