17. $x=6.5$; The triangles with x and 13 as their bases are similar by AA~, and their corresponding sides are proportional. Use the Side-Splitter Theorem to solve for x.

$$
\begin{aligned}
& \frac{x}{2+4}=\frac{13}{6+2+4} \\
& 12 x=6 \cdot 13 \\
& x=\frac{6 \cdot 13}{12} \\
& x=6.5
\end{aligned}
$$

18. $y=3$; By the Side-Splitter Theorem, the corresponding sides are proportional. Solve for y.

$$
\begin{aligned}
& \frac{y}{6}=\frac{2}{4} \\
& y=6 \cdot \frac{2}{4} \\
& y=3
\end{aligned}
$$

19. $z=\frac{13}{3}$; The triangles with z and 13 as their bases are similar by AA~, and their corresponding sides are proportional. Use the Side-Splitter Theorem to solve for z.

$$
\begin{aligned}
& \frac{z}{4}=\frac{13}{4+2+6} \\
& z=4 \cdot \frac{13}{12} \\
& z=\frac{13}{3}
\end{aligned}
$$

20. $x=8$; Apply the Side-Splitter Theorem to solve for x.

$$
\begin{aligned}
& \frac{16}{x}=\frac{x}{4} \\
& 64=x^{2} \\
& 8=x
\end{aligned}
$$

21. $x=7.5$; Given $y=16$. Apply the Triangle-Angle-Bisector Theorem to solve for x.
$\frac{y}{x}=\frac{15}{7}$
$\frac{(16)}{x}=\frac{15}{7}$
$7 \cdot 16=15 x$
$x=\frac{7.16}{15}$
$x=7.5$
22. $x=9.3$; Given $y=20$. Apply the Triangle-Angle-Bisector Theorem to solve for x.

$$
\begin{aligned}
& \frac{y}{x}=\frac{15}{7} \\
& \frac{(20)}{x}=\frac{15}{7} \\
& 7 \cdot 20=15 x \\
& x=\frac{7.20}{15} \\
& x=9.3
\end{aligned}
$$

23. $x=8.4$; Given $y=18$. Apply the Triangle-Angle-Bisector Theorem to solve for x.

$$
\begin{aligned}
& \frac{y}{x}=\frac{15}{7} \\
& \frac{(18)}{x}=\frac{15}{7} \\
& 7 \cdot 18=15 x \\
& x=\frac{7 \cdot 18}{15} \\
& x=8.4
\end{aligned}
$$

24. $\frac{E G}{E D}=\frac{E G}{E G+G D}=\frac{E G}{2 E G}=\frac{1}{2}, \frac{E H}{E F}=\frac{E H}{E H+H F}=\frac{E H}{2 E H}=\frac{1}{2}$, and $\angle E \cong \angle E$, so $\triangle E G H \sim \triangle E D F$ by SAS~. Since corresponding angles of similar triangles are congruent, $\angle E G H \cong \angle E D F$, so $\overline{G H} \| \overline{D F}$ by the Converse of the Corresponding Angles Theorem. Since corresponding sides of similar triangles are proportional, $\frac{G H}{D F}=\frac{E G}{E D}=\frac{1}{2}$, so $G H=\frac{1}{2} D F$.
25. Since $\triangle J P M$ is equilateral, $J P=J M=30$. Apply the Side-Splitter Theorem to solve for $K O$ and $L M$.

$$
\begin{array}{ll}
\frac{K O}{18+6}=\frac{J P}{30} & \frac{L M}{18}=\frac{J P}{30} \\
K O=24 \cdot \frac{J P}{30} & L M=18 \cdot \frac{J P}{30} \\
K O=\frac{4}{5} J P & L M=\frac{3}{5} J P \\
K P=\frac{4}{5}(30) & L M=\frac{3}{5}(30) \\
K P=24 & L M=18
\end{array}
$$

