Statements	Reasons
1) <i>m</i> <i>n</i>	1) Given
2) $\angle 1 \cong \angle 3$	2) Corresponding Angles Theorem
3) ∠3 ≅ ∠2	3) Vertical Angles Theorem
4) $\angle 1 \cong \angle 2$	4) Transitive Property of Congruence

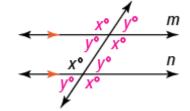
- **11.** If we apply the Same-Side Interior Angles Postulate, we can see that $\angle 1$ and $\angle 3$ are supplementary and $\angle 2$ and $\angle 4$ are supplementary because both angle pairs are same-side interior angles.
- **12.** While there is no Same-Side Exterior Angles Theorem given, same-side exterior angles are supplementary, not congruent. Thus, we can find $m \angle 1$ as follows:

$$m \angle 1 + 72 = 180^\circ$$

 $m \angle 1 = 108^\circ$

13.

10.



14. Remember that alternate Interior angles are congruent and same-side exterior angles are supplementary.

This gives the following equations:

$$5v^\circ = 2w^\circ$$

 $10w^\circ + 5v^\circ = 180^\circ$

Solve the second equation for v:

$$5v^{\circ} = 180^{\circ} - 10w^{\circ}$$
$$v = \frac{180^{\circ} - 10w^{\circ}}{5^{\circ}}$$
$$v = 36^{\circ} - 2w^{\circ}$$

Now substitute this into $5v^{\circ} = 2w^{\circ}$.

$$5(36^{\circ} - 2w^{\circ}) = 2w^{\circ}$$
$$180^{\circ} - 10w^{\circ} = 2w^{\circ}$$
$$180^{\circ} = 12w^{\circ}$$
$$w = \frac{180^{\circ}}{12} = 15$$

Now substitute this value of w into $v = 36^{\circ} - 2w^{\circ}$ to find v.

$$v = 36^{\circ} - 2 \cdot 15^{\circ}$$
$$v = 36^{\circ} - 30^{\circ} = 6^{\circ}$$

So $w = 15^{\circ}$ and $v = 6^{\circ}$.

- **15.** Answers may vary. Sample: $\angle 4$ and $\angle 7$
- **16.** Answers may vary. Sample: $\angle 7$ and $\angle 3$
- **17.** Answers may vary. Sample: $\angle 6$ and $\angle 3$

18. If we apply the Corresponding Angles Theorem, we see that $\angle 5$ is congruent to $\angle 1$. We use this information to deduce that, since $\angle 5$ is congruent to $\angle 1$, and $\angle 5$ is congruent to $\angle 4$ by the Alternate Interior Angles Theorem, then $\angle 1$ is congruent to $\angle 4$. Following the same rules, $\angle 1$ is congruent to $\angle 8$.

Applying the Same-Side Interior Angles Postulate, we see that $\angle 5$ is supplementary to $\angle 3$, and thus, $\angle 1$ is supplementary to $\angle 3$. We can apply the same rules to $\angle 4$ to find that $\angle 1$ is supplementary to $\angle 6$.

Since $\angle 5$ and $\angle 4$ are Same-Side Exterior Angles of and supplementary to $\angle 7$ and $\angle 2$, we can then conclude that $\angle 1$ is supplementary to $\angle 7$ and $\angle 2$.

Supplementary angles to $\angle 1$: $\angle 3$, $\angle 2$, $\angle 7$.

Congruent angles to $\angle 1$: $\angle 4$, $\angle 5$, $\angle 8$.

- **19.** By applying the Alternate Interior Angles Theorem, we can conclude from the diagram that $m \angle 1 = 123^{\circ}$.
- **20.** By applying the Same-Side Interior Angles Postulate, we can conclude from the diagram that

 $m \angle 2 + 123^{\circ} = 180^{\circ}$ $m \angle 2 = 57^{\circ}$