11. a. First, find the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Since $y=4$ is parallel to the x-axis, only the y-coordinates of the triangle change. Reflect the y-coordinates so that they are at an equal distance from and on the opposite side of $y=4$.

Start with A.

$$
A(6,7) \rightarrow A^{\prime}\left(6, y_{2}\right)
$$

$$
\begin{aligned}
y_{1}-4 & =4-y_{2} \\
-7-4 & =4-y_{2} \\
1 & =y_{2}
\end{aligned}
$$

Now use A and A^{\prime} to find the mapping.

$$
\begin{aligned}
-y_{1}+n & =y_{2} \\
(-7)+n & =1 \\
n & =8
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(x, 8-y)$.

$$
\begin{aligned}
& A(6,7) \rightarrow A^{\prime}(6,1) \\
& B(9,3) \rightarrow B^{\prime}(9,5) \\
& C(4,-2) \rightarrow C^{\prime}(4,10)
\end{aligned}
$$

Repeat the procedure to find the coordinates of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Since $x=3$ is parallel to the y-axis, only the x-coordinates of the triangle change. Reflect the x-coordinates so that they are at an equal distance from and on the opposite side of $x=3$.

Start with A^{\prime}.

$$
A^{\prime}(6,1) \rightarrow A^{\prime \prime}\left(x_{3}, 1\right)
$$

$$
x_{2}-3=3-x_{3}
$$

$$
\begin{aligned}
6-3 & =3-x_{3} \\
0 & =x_{3}
\end{aligned}
$$

Now use A^{\prime} and $A^{\prime \prime}$ to find the mapping.

$$
\begin{aligned}
-x_{2}+n & =x_{3} \\
-(6)+n & =0 \\
n & =6
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(6-x, y)$.

$$
\begin{aligned}
& A^{\prime}(6,1) \rightarrow A^{\prime \prime}(0,1) \\
& B^{\prime}(9,5) \rightarrow B^{\prime \prime}(-3,5) \\
& C(4,10) \rightarrow C^{\prime \prime}(2,10)
\end{aligned}
$$

b. $\mathrm{R}_{x=3}(x, y) \rightarrow(6-x, y)$

$$
R_{y=4}(x, y) \rightarrow(x, 8-y)
$$

12. Yes; squares have the same angle measures because they are right angles and the size of sides are the same length.
13. Jacob is incorrect. He should reflect the Hole P over the back wall at P^{\prime}. Then connect the Start
point with P^{\prime}. Jacob should aim at the intersection of the back wall with this second line.

14.

17. Yes; all corresponding angles and sides appear to be the same size.
18. No; corresponding sides do not appear to be the same.
19. A reflection about the x-axis maps $y \rightarrow-y$.

$$
\begin{aligned}
& A(9,-3) \rightarrow A^{\prime}(9,3) \\
& B(6,4) \rightarrow B^{\prime}(6,-4) \\
& C(-1,-5) \rightarrow C^{\prime}(-1,5)
\end{aligned}
$$

20. A reflection about the y-axis maps $x \rightarrow-x$.

$$
\begin{aligned}
& A(9,-3) \rightarrow A^{\prime}(-9,-3) \\
& B(6,4) \rightarrow B^{\prime}(-6,4) \\
& C(-1,-5) \rightarrow C^{\prime}(1,-5)
\end{aligned}
$$

21. First, find the coordinates of A^{\prime}. Since $x=-5$ is parallel to the y-axis, only the x-coordinates of the triangle change. Reflect the x-coordinates so that they are at an equal distance from and on the opposite side of $x=-5$.

Start with A.
$A(9,-3) \rightarrow A^{\prime}\left(x_{2},-3\right)$

$$
\begin{aligned}
x_{1}-(-5) & =-5-x_{2} \\
9+5 & =-5-x_{2} \\
-19 & =x_{2}
\end{aligned}
$$

Now use A and A^{\prime} to find the mapping.

$$
\begin{aligned}
x_{1}+n & =x_{2} \\
-(9)+n & =-19 \\
n & =-10
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(-10-x, y)$.
$A(9,-3) \rightarrow A^{\prime}(-19,-3)$
$B(6,4) \rightarrow B^{\prime}(-16,4)$
$C(-1,-5) \rightarrow C^{\prime}(-9,-5)$
22. First, find the coordinates of A^{\prime}. Since $y=1$ is parallel to the x-axis, only the y-coordinates of the triangle change. Reflect the y-coordinates so that they are at an equal distance from and on the opposite side of $y=1$.

Start with A.
$A(9,-3) \rightarrow A^{\prime}\left(9, y_{2}\right)$

$$
\begin{aligned}
1-y_{1} & =y_{2}-1 \\
1-(-3) & =y_{2}-1 \\
5 & =y_{2}
\end{aligned}
$$

Now use A and A^{\prime} to find the mapping.

$$
\begin{aligned}
-y_{1}+n & =y_{2} \\
-(-3)+n & =5 \\
n & =2
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(x, 2-y)$.

$$
\begin{aligned}
& A(9,-3) \rightarrow A^{\prime}(9,5) \\
& B(6,4) \rightarrow B^{\prime}(6,-2) \\
& C(-1,-5) \rightarrow C^{\prime}(-1,7)
\end{aligned}
$$

23. The rule for reflecting across the line $y=x$ is $R_{y=x}(x, y)=(y, x)$.

$$
\begin{aligned}
& A(9,-3) \rightarrow A^{\prime}(-3,9) \\
& B(6,4) \rightarrow B^{\prime}(4,6) \\
& C(-1,-5) \rightarrow C^{\prime}(-5,-1)
\end{aligned}
$$

24. First, find the coordinates of A^{\prime}. Since $y=-2$ is parallel to the x-axis, only the y-coordinates of the triangle change. Reflect the y-coordinates so that they are at an equal distance from and on the opposite side of $y=-2$.

Start with A.

$$
A(9,-3) \rightarrow A^{\prime}\left(9, y_{2}\right)
$$

$$
\begin{aligned}
-2-y_{1} & =y_{2}-(-2) \\
-2-(-3) & =y_{2}+2 \\
-2+3-2 & =y_{2} \\
-1 & =y_{2}
\end{aligned}
$$

Now use A and A^{\prime} to find the mapping.

$$
\begin{aligned}
-y_{1}+n & =y_{2} \\
-(-3)+n & =-1 \\
n & =-4
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(x,-4-y)$.

$$
\begin{aligned}
& A(9,-3) \rightarrow A^{\prime}(9,1) \\
& B(6,4) \rightarrow B^{\prime}(6,-8) \\
& C(-1,-5) \rightarrow C^{\prime}(-1,1)
\end{aligned}
$$

25. Examine D and D^{\prime}. Note that the points have the same y-coordinates. This means that the line of reflection is a vertical line.

Recall that the line of reflection passes through the midpoint of the line segments connecting each point to its image. Since the line is a vertical line, all we need to do is find the x-coordinate of the midpoint of the segment connecting D and D^{\prime}.

$$
\begin{aligned}
M_{x} & =\frac{x_{1}+x_{2}}{2} \\
& =\frac{3+1}{2} \\
& =2
\end{aligned}
$$

This means the line of reflection is $x=2$.
Now use D and D^{\prime} to find the mapping.

$$
\begin{aligned}
-x_{1}+n & =x_{2} \\
-(3)+n & =1 \\
n & =4
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(4-x, y)$.
$R_{x=2}(x, y)=(4-x, y)$
26. Examine G and G^{\prime}. Note that the points have the same x-coordinates. This means that the line of reflection is a horizontal line.

Recall that the line of reflection passes through the midpoint of the line segments connecting each point to its image. Since the line is a horizontal line, all we need to do is find the y-coordinate of the midpoint of the segment connecting G and G^{\prime}.

$$
\begin{aligned}
M_{y} & =\frac{y_{1}+y_{2}}{2} \\
& =\frac{12+(-2)}{2} \\
& =5
\end{aligned}
$$

This means the line of reflection is $y=5$.

Now use G and G^{\prime} to find the mapping.

$$
\begin{aligned}
-y_{1}+n & =y_{2} \\
-(12)+n & =-2 \\
n & =10
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(x, 10-y)$.
$R_{y=5}(x, y)=(x, 10-y)$
27. Examine K and K^{\prime}. Note that the points have the same x-coordinates. This means that the line of reflection is a horizontal line.

Recall that the line of reflection passes through the midpoint of the line segments connecting each point to its image. Since the line is a horizontal line, all we need to do is find the y-coordinate of the midpoint of the segment connecting K and K^{\prime}.

$$
\begin{aligned}
M_{y} & =\frac{y_{1}+y_{2}}{2} \\
& =\frac{-6+(-4)}{2} \\
& =-5
\end{aligned}
$$

This means the line of reflection $y=-5$.

Now use K and K^{\prime} to find the mapping.

$$
\begin{aligned}
-y_{1}+n & =y_{2} \\
-(-6)+n & =-4 \\
n & =-10
\end{aligned}
$$

So, the reflection maps $(x, y) \rightarrow(x,-10-y)$.
$R_{y=-5}(x, y)=(x,-10-y)$
28. The line of reflection is $y=-x$. Now, find the mapping. A reflection about a line maps $(x, y) \rightarrow(-x,-y)$.

Use the equation for the line to substitute for x and y in the mapping.
$(x, y) \rightarrow(-y,-x)$
So, $R_{y=-x}(x, y)=(-y,-x)$
29.

