- **13.** $\angle C \cong \angle F$; Given a congruent angle and a congruent side, a second corresponding angle that is adjacent to the known side must also be congruent in the triangles to apply ASA.
- 14. $\overline{BC} \cong \overline{DF}$ or $\overline{AC} \cong \overline{EF}$; Given two pairs of congruent angles, a side adjacent to either angle but not included between them must also be congruent to apply AAS.
- **15.** $\overline{AC} \cong \overline{EF}$; Given a congruent angle and a congruent side, the second side that is adjacent to the known angle must be also be congruent to apply SAS.
- **16.** $\overline{AC} \cong \overline{EF}$ or $\overline{AB} \cong \overline{ED}$; Given a pair of right triangles with congruent hypotenuses, a corresponding leg must also be congruent to use HL.
- **17.** GL = 9 and HK = 15; To apply the HL Theorem, a hypotenuse and a leg must be congruent in right triangles to show that the triangles are congruent. The hypotenuse GH = 15, so the corresponding hypotenuse must be congruent; therefore $HK \cong GH$ and HK = 15. The leg JK = 9, so the corresponding leg must be congruent; therefore $JK \cong GL$ and GL = 9.
- **18.** DE = DB and EF = 12, or AB = 33; To apply the HL Theorem, a hypotenuse and a leg must be congruent in right triangles to show that the triangles are congruent. The hypotenuses must be congruent; therefore $DE \cong BC$. Either pair of corresponding legs may be congruent. Using the leg AC = 12, the corresponding leg must be congruent; therefore $EF \cong AC$ and EF = 12. Or using the leg DF = 33, the corresponding leg must be congruent; therefore $AB \cong DF$ and AB = 33.
- **19.** Since $\overline{AC} \perp \overline{DB}$, $\angle ADB$ and $\angle BDC$ are right angles. $\overline{BD} \cong \overline{BD}$ by the Reflexive Property. Therefore, given $\overline{AC} \cong \overline{CB}$, $\triangle ABD \cong \triangle CBD$ by the HL Theorem.
- **20.** Given that $\overline{EF} \cong \overline{GH}$ and G is the midpoint of \overline{EJ} by the definition of midpoint, $\overline{EG} \cong \overline{GJ}$. Since $\triangle EGF$ and $\triangle GJH$ are right triangles, by the HL Theorem, $\triangle EGF \cong \triangle GJH$.