13. $\angle C \cong \angle F$; Given a congruent angle and a congruent side, a second corresponding angle that is adjacent to the known side must also be congruent in the triangles to apply ASA.
14. $\overline{B C} \cong \overline{D F}$ or $\overline{A C} \cong \overline{E F}$; Given two pairs of congruent angles, a side adjacent to either angle but not included between them must also be congruent to apply AAS.
15. $\overline{A C} \cong \overline{E F}$; Given a congruent angle and a congruent side, the second side that is adjacent to the known angle must be also be congruent to apply SAS.
16. $\overline{A C} \cong \overline{E F}$ or $\overline{A B} \cong \overline{E D}$; Given a pair of right triangles with congruent hypotenuses, a corresponding leg must also be congruent to use HL.
17. $G L=9$ and $H K=15$; To apply the HL Theorem, a hypotenuse and a leg must be congruent in right triangles to show that the triangles are congruent. The hypotenuse $G H=15$, so the corresponding hypotenuse must be congruent; therefore $H K \cong G H$ and $H K=15$. The leg $J K=9$, so the corresponding leg must be congruent; therefore $J K \cong G L$ and $G L=9$.
18. $D E=D B$ and $E F=12$, or $A B=33$; To apply the HL Theorem, a hypotenuse and a leg must be congruent in right triangles to show that the triangles are congruent. The hypotenuses must be congruent; therefore $D E \cong B C$. Either pair of corresponding legs may be congruent. Using the leg $A C=12$, the corresponding leg must be congruent; therefore $E F \cong A C$ and $E F=12$. Or using the leg $D F=33$, the corresponding leg must be congruent; therefore $A B \cong D F$ and $A B=33$.
19. Since $\overline{A C} \perp \overline{D B}, \angle A D B$ and $\angle B D C$ are right angles. $\overline{B D} \cong \overline{B D}$ by the Reflexive Property. Therefore, given $\overline{A C} \cong \overline{C B}, \triangle A B D \cong \triangle C B D$ by the HL Theorem.
20. Given that $\overline{E F} \cong \overline{G H}$ and G is the midpoint of $\overline{E J}$ by the definition of midpoint, $\overline{E G} \cong \overline{G J}$. Since $\triangle E G F$ and $\triangle G J H$ are right triangles, by the HL Theorem, $\triangle E G F \cong \triangle G J H$.
