2. Two triangles that are similar have two pairs of corresponding congruent angles.
3. A similarity transformation is a composition of a dilation and one or more rigid motions.
4. A point that is its own image in a dilation is the center of dilation.
5. As a result of a dilation, if $A^{\prime} B^{\prime}=n \cdot A B$, then n is the scale factor.
6. $\quad F^{\prime}(2.5,-1), G^{\prime}(-1,-2), H^{\prime}(0,3)$;

Multiply each coordinate of the preimage point by $\frac{1}{2}$ to find the coordinates of the image points.

$$
\begin{aligned}
& F(5,-2) \rightarrow F^{\prime}\left(5 \cdot \frac{1}{2},-2 \cdot \frac{1}{2}\right)=F^{\prime}(2.5,-1) \\
& G(-2,-4) \rightarrow G^{\prime}\left(-2 \cdot \frac{1}{2},-4 \cdot \frac{1}{2}\right)=G^{\prime}(-1,-2) \\
& H(0,6) \rightarrow H^{\prime}\left(0 \cdot \frac{1}{2}, 6 \cdot \frac{1}{2}\right)=H^{\prime}(0,3)
\end{aligned}
$$

7. $K^{\prime}(0,4), L^{\prime}(9,-8), M^{\prime}(-6,4)$;

Preimage Point	Distance from $K(0,4)$		Triple Distances from $K(0,4)$		Add to $K(0,4)$	Image Point
	Horizontal	Vertical	Horizontal	Vertical		
$K(0,4)$	0	0	0	0	$(0+0,0+4)$	$K^{\prime}(0,4)$
$L(3,0)$	3	-4	9	-12	$(9+0,-12+4)$	$L^{\prime}(9,-8)$
$M(-2,4)$	-2	0	-6	0	$(-6+0,0+4)$	$M^{\prime}(-6,4)$

8. $\quad R_{m} \circ D_{\frac{1}{3}}$ where m is the line with equation $y=-\frac{1}{2}$. Reflect $P Q R S$ over the line $y=-\frac{1}{2}$, and then since $Y X=\frac{1}{3} Q R$ and $Z Y=\frac{1}{3} S R$, dilate the reflection by $\frac{1}{3}$.
9. No; the scale factor is ratio of a side length $\triangle P Q R$ to the corresponding side length $\triangle A B C$, so the scale factor is $\frac{P Q}{A B}=\frac{5}{10}=\frac{1}{2}$.
10. $\frac{F G}{J G}=\frac{9}{6}=\frac{3}{2}$ and $\frac{G J}{G H}=\frac{6}{4}=\frac{3}{2}$, so $\frac{F G}{J G}=\frac{G J}{G H} \cdot m \angle F G J=m \angle J G H=90^{\circ}$, so $\angle F G J \cong \angle J G H$. Thus, $\triangle F G J \sim \triangle J G H$ by SAS \sim.
11. $\frac{K L}{N L}=\frac{2}{4}=\frac{1}{2}, \frac{L N}{L M}=\frac{4}{8}=\frac{1}{2}$, and $\frac{K N}{N M}=\frac{3}{6}=\frac{1}{2}$, so $\frac{K L}{N L}=\frac{L N}{L M}=\frac{K N}{N M}$. Thus $\triangle K L N \sim \triangle N L M$ by $S S S \sim$.
12. Since $m \angle U=180^{\circ}-m \angle T-m \angle V=78^{\circ}, \angle U \cong \angle Z$. So, triangle similarity can be shown by AA \sim if $m \angle X=m \angle T=37^{\circ}$ or if $m \angle Y=m \angle V=65^{\circ}$.
13. $R S=8 ; \triangle R S T \sim \triangle R S U$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 1 to solve for $R S$.

$$
\begin{aligned}
& \frac{R S}{R U}=\frac{R T}{R S} \\
& \frac{R S}{4}=\frac{4+12}{R S} \\
& R S^{2}=64 \\
& R S=8
\end{aligned}
$$

14. $S T=8 \sqrt{3} ; \triangle R S T \sim \triangle R S U$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 1 to solve for $S T$.

$$
\begin{aligned}
\frac{S T}{R S} & =\frac{S U}{R U} \\
\frac{S T}{8} & =\frac{S U}{4} \\
\frac{S T}{8} & =\frac{(4 \sqrt{3})}{4} \\
S T & =8 \sqrt{3}
\end{aligned}
$$

15. $S U=4 \sqrt{3} ; \triangle R S U \sim \triangle T S U$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 2 to solve for $S U$.

$$
\begin{aligned}
& \frac{S U}{R U}=\frac{T U}{S U} \\
& \frac{S U}{4}=\frac{12}{S U} \\
& S U^{2}=48 \\
& S U=4 \sqrt{3}
\end{aligned}
$$

16. $x=48$; Apply the Side-Splitter Theorem to solve for x.

$$
\begin{aligned}
& \frac{x}{32}=\frac{30}{20} \\
& x=32 \cdot \frac{30}{20} \\
& x=48
\end{aligned}
$$

17. $x=14.4 ;$ Apply the Corollary to the Side-Splitter Theorem to solve for x.

$$
\begin{aligned}
& \frac{x}{18}=\frac{16}{20} \\
& x=18 \cdot \frac{16}{20} \\
& x=14.4
\end{aligned}
$$

18. $x=4$; Use the Triangle-Angle-Bisector Theorem to solve for x.

$$
\begin{aligned}
& \frac{x}{8}=\frac{2.5}{5} \\
& x=8 \cdot \frac{2.5}{5} \\
& x=4
\end{aligned}
$$

19. $x=3$; Use the Triangle-Angle-Bisector Theorem to solve for x.

$$
\begin{aligned}
& \frac{x}{9}=\frac{(5-x)}{6} \\
& 6 x=9(5-x) \\
& 6 x=45-9 x \\
& 15 x=45 \\
& x=3
\end{aligned}
$$

20. $G K$ and $G H$; By the similarity $\triangle G H J \cong \triangle G J K, \frac{G H}{G J}=\frac{G J}{G K}$.
