- 2. Two triangles that are **similar** have two pairs of corresponding congruent angles.
- **3.** A **similarity transformation** is a composition of a dilation and one or more rigid motions.
- 4. A point that is its own image in a dilation is the **center of dilation**.
- 5. As a result of a dilation, if $A'B' = n \cdot AB$, then *n* is the scale factor.

6.
$$F'(2.5, -1), G'(-1, -2), H'(0, 3);$$

Multiply each coordinate of the preimage point by $\frac{1}{2}$ to find the coordinates of the image points.

$$F(5,-2) \to F'\left(5 \cdot \frac{1}{2}, -2 \cdot \frac{1}{2}\right) = F'(2.5,-1)$$

$$G(-2,-4) \to G'\left(-2 \cdot \frac{1}{2}, -4 \cdot \frac{1}{2}\right) = G'(-1,-2)$$

$$H(0,6) \to H'\left(0 \cdot \frac{1}{2}, 6 \cdot \frac{1}{2}\right) = H'(0,3)$$

7. K'(0, 4), L'(9, -8), M'(-6, 4);

Preimage Point	Distance from <i>K</i> (0, 4)		Triple Distances from <i>K</i> (0, 4)		Add to <i>K</i> (0, 4)	lmage Point
	Horizontal	Vertical	Horizontal	Vertical		
K (0,4)	0	0	0	0	(0+0,0+4)	K'(0, 4)
<i>L</i> (3,0)	3	-4	9	-12	(9+0,-12+4)	L'(9, -8)
M (-2,4)	-2	0	-6	0	(-6+0,0+4)	M'(-6, 4)

- 8. $R_m \circ D_{\frac{1}{3}}$ where *m* is the line with equation $y = -\frac{1}{2}$. Reflect *PQRS* over the line $y = -\frac{1}{2}$, and then since $YX = \frac{1}{3}QR$ and $ZY = \frac{1}{3}SR$, dilate the reflection by $\frac{1}{3}$.
- 9. No; the scale factor is ratio of a side length $\triangle PQR$ to the corresponding side length $\triangle ABC$, so the scale factor is $\frac{PQ}{AB} = \frac{5}{10} = \frac{1}{2}$.
- **10.** $\frac{FG}{JG} = \frac{9}{6} = \frac{3}{2}$ and $\frac{GJ}{GH} = \frac{6}{4} = \frac{3}{2}$, so $\frac{FG}{JG} = \frac{GJ}{GH}$. $m \angle FGJ = m \angle JGH = 90^{\circ}$, so $\angle FGJ \cong \angle JGH$. Thus, $\triangle FGJ \sim \triangle JGH$ by SAS ~.

- 11. $\frac{KL}{NL} = \frac{2}{4} = \frac{1}{2}, \frac{LN}{LM} = \frac{4}{8} = \frac{1}{2}, \text{ and } \frac{KN}{NM} = \frac{3}{6} = \frac{1}{2}, \text{ so } \frac{KL}{NL} = \frac{LN}{LM} = \frac{KN}{NM}.$ Thus $\triangle KLN \sim \triangle NLM$ by SSS ~.
- **12.** Since $m \angle U = 180^{\circ} m \angle T m \angle V = 78^{\circ}$, $\angle U \cong \angle Z$. So, triangle similarity can be shown by AA ~ if $m \angle X = m \angle T = 37^{\circ}$ or if $m \angle Y = m \angle V = 65^{\circ}$.
- **13.** RS = 8; $\triangle RST \sim \triangle RSU$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 1 to solve for *RS*.

$$\frac{RS}{RU} = \frac{RT}{RS}$$
$$\frac{RS}{4} = \frac{4+12}{RS}$$
$$RS^2 = 64$$
$$RS = 8$$

14. $ST = 8\sqrt{3}$; $\triangle RST \sim \triangle RSU$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 1 to solve for *ST*.

$$\frac{ST}{RS} = \frac{SU}{RU}$$
$$\frac{ST}{8} = \frac{SU}{4}$$
$$\frac{ST}{8} = \frac{\left(4\sqrt{3}\right)}{4}$$
$$ST = 8\sqrt{3}$$

15. $SU = 4\sqrt{3}$; $\triangle RSU \sim \triangle TSU$ by Theorem 7-4, so a proportion of the corresponding legs can be used. Use Corollary 2 to solve for *SU*.

$$\frac{SU}{RU} = \frac{TU}{SU}$$
$$\frac{SU}{4} = \frac{12}{SU}$$
$$SU^{2} = 48$$
$$SU = 4\sqrt{3}$$

16. x = 48; Apply the Side-Splitter Theorem to solve for x.

$$\frac{x}{32} = \frac{30}{20}$$
$$x = 32 \cdot \frac{30}{20}$$
$$x = 48$$

17. x = 14.4; Apply the Corollary to the Side-Splitter Theorem to solve for x.

$$\frac{x}{18} = \frac{16}{20}$$
$$x = 18 \cdot \frac{16}{20}$$
$$x = 14.4$$

18. x = 4; Use the Triangle-Angle-Bisector Theorem to solve for x.

$$\frac{x}{8} = \frac{2.5}{5}$$
$$x = 8 \cdot \frac{2.5}{5}$$
$$x = 4$$

19. x = 3; Use the Triangle-Angle-Bisector Theorem to solve for x.

$$\frac{x}{9} = \frac{(5-x)}{6}$$
$$6x = 9 (5-x)$$
$$6x = 45 - 9x$$
$$15x = 45$$
$$x = 3$$

20. *GK* and *GH*; By the similarity $\triangle GHJ \cong \triangle GJK$, $\frac{GH}{GJ} = \frac{GJ}{GK}$.