\qquad Period:

Learning Targets:

\checkmark Explore and name various solids
\checkmark Identify edges, faces, and vertices of a figure
\checkmark Use Euler's Formula to determine the number of vertices, faces, or edges
\checkmark Describe the cross-section of a plane and a solid
\checkmark Rotate a two-dimensional figure about an axis to create a three-dimensional figure

* A polyhedron is a \qquad that is bounded by \qquad polygons called faces, that enclose a single region of \qquad -
* An edge of a polyhedron is a \qquad segment formed by the \qquad of two \qquad faces .
* A vertex of a polyhedron is a \qquad where three or more \qquad meet.
* The plural of polyhedron is polyhedra, or polyhedrons.

FAMILIES OF SOLIDS
Name: $\underset{\text { POLYHEDRA }}{\text { Prism }}$

1) Why are the "circular solids" above NOT considered polyhedra?

They have "sides" or "faces" that are not polygons

For \#s 2-3, name the figure, count the number of faces, edges, and vertices of each polyhedron.
2) Name: \qquad
Faces: \qquad Edges: \qquad Vertices: \qquad 7
3) Name: \qquad Triangular Prism
Faces: \qquad Edges \qquad 9 Vertices: \qquad 6

Euler's Theorem
(also known as Euler's Formula)

$$
F+V-E=2
$$

where,
$V=$ \# of vertices of the polyhedron
$\boldsymbol{F}=$ \# of faces of the polyhedron
$\boldsymbol{E}=$ \# of edges of the polyhedron

For \#s 4-5, use Euler's Theorem to answer the questions.
4) If a solid has 8 faces and 12 vertices, how many edges will it have?

$$
\begin{gathered}
F+V-E=2 \\
8+12-E=2 \\
20-2=E \\
18=E
\end{gathered}
$$

5) If a solid has 8 faces and 12 edges, how many vertices will it have?

$$
\begin{gathered}
F+V-E=2 \\
8+V-12=2 \\
V-4=2 \\
V=6
\end{gathered}
$$

If a solid has 14 faces and 36 edges, how many vertices will it have?

$$
\begin{gathered}
F+V-E=2 \\
14+V-36=2 \\
V-22=2 \\
V=24
\end{gathered}
$$

\qquad intersection of a \qquad solid figure and a \qquad plane .

Cross-Section A: Parallel to the Base	Cross-Section B: Perpendicular to the Base
Cross-Section A is in the shape of a \qquad circle Any cross section made parallel to the base of a prism/cylinder will have the same shape as the base of the figure.	Cross-Section B is in the shape of a rectangle Since the bases of the cylinder meet the lateral face (the curved surface) at a right angle, the vertical cross-section must also contain four right angles.

Discuss:

\checkmark Why does the cross-section in A appear to be an oval or ellipse? perspective \checkmark Is it possible for a cross-section of a cylinder to have a shape other than those identified above?

Yes, if sliced at an angle (for example)
For \#s 7-10, describe the vertical cross section of each item (perpendicular to the "base").

Activity: Generating Three-Dimensional Figures

1. Cut out the following shapes from a piece of card stock: right triangle, rectangle, semi-circle
2. One at a time, tape the flat edge of each shape to the wooden dowel (or the end of your pencil)
3. Twirl the wooden dowel between your hands to see the 3 -dimensional figure generated by the rotation.
4. Sketch the 3-D figure in the box provided and name the figure you generated.

EXTEND: Make up your own shape and cut it out. Perform the same activity to see what the 3-D rotation of your figure looks like. Sketch the 2-D and resulting 3-D figures in the box provided.
11) Right Triangle

2-D Figure and Line of Rotation	3-D Figure Generated by the Rotation
	Cone

12) Rectangle

2-D Figure and Line of Rotation	3-D Figure Generated by the Rotation
\uparrow	

13) Semi-Circle

2-D Figure and Line of Rotation	3-D Figure Generated by the Rotation

14) Create-Your-Own Figure

2-D Figure and Line of Rotation
3-D Figure Generated by the Rotation

Answers will vary

