Miki tosses a coin 50 times, and the coin shows tails 28 times.

What is the experimental probability of Miki getting tails?

$$P(\text{tails}) = \frac{28}{50}$$

Kalvin flips a small paper cup 50 times and a large paper cup 30 times. The table below shows the results of his experiments.

Cup-Toss Results

Where Cup Lands	Small Paper Cup	Large Paper Cup
Side	39 times	22 times
One of Its Ends	11 times	8 times

What is the experimental probability of the small paper cup landing on its side?

$$P(\text{small cup on side}) = \frac{39}{50}$$

What is the experimental probability of the large paper cup landing on one of its ends?

$$P(\text{large cup on end}) = \frac{8}{30}$$

Colby rolls a number cube 50 times. The table below shows the results of her experiment.

Number Cube Results		
Number	Frequency	
1	6 ##	
2	+++	
3	6 ##	
4	++++	
5	11 ++++ ++++	
6	++++ ++++	

What is the THEORETICAL probability of rolling an odd number?

$$P(\text{odd}) = \frac{3}{6} = \frac{1}{2}$$

If Colby rolls the number cube 1000 times, about how many times can she expect to roll an odd number? Show your work using the THEORETICAL probability.

$$\frac{1}{2}$$
 • 1000 = about 500 times

What is the EXPERIMENTAL probability of rolling an odd number?

$$P(\text{odd}) = \frac{23}{50}$$

If Colby rolls the number cube 1000 times, about how many times can she expect to roll an odd number? Show your work using the EXPERIMENTAL probability.

$$\frac{23}{50}$$
 • 1000 = about 460 times