Give a smile to someone as you pass them in the hall today!

Today you will need:

- Class Note Page (I will pass out)
- graph spiral
- pencil

Head your graph spiral for Problem 3.2

Warm-Up

In your graph spiral, answer the following question.

Suppose you tear the 3 corners off a triangle, and arrange them like this:

What conjecture (rule) can we say about the sum of all the angles in a triangle?

3 2 Design Challenge II Drawing Triangles

The drawing here shows a triangle with measures of all angles and sides.

Suppose you want to text a friend to give directions for drawing an exact copy of the figure. What is the shortest message to do the job? How do you know?

As a team, answer the questions on <u>page 64</u>. Record the answers in your graph paper.

A Which of these short messages give enough information to draw a triangle congruent to $\triangle ABC$ above?

Can you make a <u>different</u> triangle, given the pieces of information?

1.
$$\overline{BC} = 4 \text{ cm}$$

 $\angle B = 60^{\circ}$
 $\overline{AB} = 3 \text{ cm}$

2.
$$\angle B = 60^{\circ}$$

$$\overline{BC} = 4 \text{ cm}$$

$$\angle C = 46^{\circ}$$

A Which of these short messages give enough information to draw a triangle congruent to $\triangle ABC$ above?

Can you make a <u>different</u> triangle, given the pieces of information?

$$3. \ \overline{AB} = 3 \text{ cm}$$

$$\overline{BC} = 4 \text{ cm}$$

$$\angle C = 46^{\circ}$$

4.
$$\angle B = 60^{\circ}$$

$$\angle A = 74^{\circ}$$

$$\angle C = 46^{\circ}$$

Class Work Answers:

- A. 1. Makes a <u>congruent triangle</u>, given two sides and an angle between the sides (side-angle-side)
 - 2. Makes a <u>congruent triangle</u>, given two angles and a <u>side between the angles</u> (angle-side-angle)
 - 3. Makes <u>different possible triangles</u>, given two sides and an angle not between the sides (side-side-angle)
 - 4. Makes <u>different possible triangles</u>, given three angles (angle-angle-angle)

Combinations that Create UNIQUE Triangles

We can make a <u>unique</u> triangle if we have one of these:

- Side-Angle-Side (SAS) Two sides of a triangle and the angle in between
- Angle-Side-Angle (ASA) Two angles of a triangle and the side in between
- Side-Side (SSS) Three sides of a triangle

Combinations that DON'T Create Unique Triangles

We can make more than one triangle if we have one of these:

- Angle-Angle (AAA) Three angles of a triangle
- Side-Side-Angle (SSA) Two sides of a triangle and the angle NOT between the sides

Combinations that DON'T Create ANY Triangle

We can't make a triangle if we have one of these:

- The sum of the two shorter sides is less than or equal to the length of the longest side
- the sum of the angles in the triangle are less than OR more than 180°

