Name:	Ker	
-------	-----	--

П	1	+	0	٠	
ப	а	L	ᆮ		

Period:

Stretching and Shrinking Unit Test Review

Standards

7.G.1: <u>Solve</u> problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing.

7.G.1: Reproduce a scale drawing at a different scale.

7.G.6: Solve real-world and mathematical problems involving area of <u>two-dimensional</u> objects composed of triangles, quadrilaterals, and other polygons.

1. Below are several pairs of similar figures. In each, find the missing measurement(s). Show your thinking!!!

a.

b.

3 cm corresponds to 7.5 cm and we're stretching, so SF = 7.5 ÷ 3 = 2.5.

4cm corresponds to a, so

Ç.

10 cm corresponds to 2.5 cm. stretching $SF = 10 \div 2.5 = 4$ 1.5 cm corresponds to c, $SO C = 1.5 \cdot 4 = 6 \text{ cm}$ shrinking $SF = 2.5 \div 10 = 0.25$ 5 cm corresponds to b, SO D = 5.0.25 = 1.25 cm

6.495 cm corresponds to 4.33 cm and we're stretching, so SF = 6.495 ÷ 4.33 = 1.5.

2.5 cm corresponds to d, so d = 2.5.1.5 = 3.75 cm 5 cm corresponds to e, so e = 5.1.5 = 7.5 cm

2. Which rectangles below are similar? Explain why.

Rectangles I and 2 are similar because the scale factor is the same between the corresponding sides, and the corresponding angles are equal.

 $SF = 6 \div 4 = 1.5$ $SF = 8 \div 6 = \frac{4}{3}$ $SF = 9 \div 6 = 1.5$ $SF = 5 \div 4 = 1.25$ The coach took a digital photo of the new cycling team bike. She sent a 4 cm-by-6 cm photo to each team member. Suppose you want to make a 2 cm-by-3 cm copy of the original photo.

P = 2(4+6) = 20 cm $A = 4.6 = 24 \text{ cm}^2$

smaller copy P = 2(2+3) = 10 cm $A = 2.3 = 6 \text{ cm}^2$

- 3. How will the <u>angles</u> in the original photo compare to the corresponding angles in the smaller photo? The corresponding angles are congruent (equal).
- 4. How will the <u>perimeter</u> of the original photo compare to that of the smaller photo? Provide a numerical justification as a part of your answer.

The perimeter of the original will be two times the perimeter of the copy (20 cm us. 10 cm)

5. How will the <u>area</u> of the original photo compare to that of the smaller photo? Provide a numerical justification as a part of your answer.

The area of the original will be four times the area of the copy (24 cm² us. 6 cm²)

6. Rectangle A is sketched at right. Rectangle B is similar to Rectangle A. The scale factor from A to B is 3.25. <u>Draw and label</u> rectangle B on the grid below.

4 • 3.25 = 13

8 · 3.25 = 26

- 7. A figure has a perimeter of 40 ft and an area of 51 ft². A similar figure is created using a scale factor of 1.5.
 - a. What is the perimeter of the new figure? Show your work.

b. What is the area of the new figure? Show your work.

- 8. A figure has a perimeter of 315 yd and an area of 235 yd². A similar figure is created using a scale factor of 0.4.
 - a. What is the perimeter of the new figure? Show your work.

b. What is the <u>area</u> of the new figure? Show your work.

$$235 \cdot 0.4^2 = 37.6 \text{ yd}^2$$

9. Find the area of the figures below by using the formulas for rectangles and triangles. Show ALL work.

a.

(b) and (c)
$$\frac{5.1}{2} = 2.5$$

$$A = 10 + 2.5 + 2.5 = 15 \text{ units}^2$$

c.

b.

d.

